2. Funding Period

 

D 5   Roland Lill & Ulrich Mühlenhoff

1. Braymer, J.J., and Lill, R. (2017) Iron-Sulfur Cluster Biogenesis and Trafficking in Mitochondria. J Biol Chem. 292. in press
2. Freibert, S.-A., Goldberg, A.V., Hacker, C., Molik, S., Dean, P., Williams, T.A., et al. (2017) Evolutionary conservation and in vitro reconstitution of microsporidian iron-sulfur cluster biosynthesis. Nat Commun 8: 13932.
3. Li, H., Stümpfig, M., Zhang, C., An, X., Stubbe, J., Lill, R., and Huang, M. (2017) The diferric-tyrosyl radical cluster of ribonucleotide reductase and cytosolic iron-sulfur clusters have distinct and similar biogenesis requirements. J Biol Chem. 292. in press
4. Christ, S., Leichert, L.I., Willms, A., Lill, R., and Mühlenhoff, U. (2016) Defects in Mitochondrial Iron-Sulfur Cluster Assembly Induce Cysteine S-Polythiolation on Iron-Sulfur Apoproteins. Antioxid Redox Signal 25: 28–40.
5. Melber, A., Na, U., Vashisht, A., Weiler, B.D., Lill, R., Wohlschlegel, J.A., and Winge, D.R. (2016) Role of Nfu1 and Bol3 in iron-sulfur cluster transfer to mitochondrial clients. Elife 5. e15991
6. Netz, Daili J A, Genau, H.M., Weiler, B.D., Bill, E., Pierik, A.J., and Lill, R. (2016) The conserved protein Dre2 uses essential [2Fe-2S] and [4Fe-4S] clusters for its function in cytosolic iron-sulfur protein assembly. Biochem J 473: 2073–2085.
7.     Uzarska, M.A., Nasta, V., Weiler, B.D., Spantgar, F., Ciofi-Baffoni, S., Saviello, M.R., et al. (2016) Mitochondrial Bol1 and Bol3 function as assembly factors for specific iron-sulfur proteins. Elife 5. e16673.
   
   
   

 

 

D 7 Erhard Bremer

1.    Widderich N., Bremer E., Smits Sander HJ. The Ectoine Hydroxylase: A Nonheme-Containing Iron(II) and 2-Oxoglutarate-Dependent Dioxygenase. In Encyclopedia of Inorganic and Bioinorganic Chemistry.
2. Schulz, A., Stöveken, N., Binzen, I.M., Hoffmann, T., Heider, J., and Bremer, E. (2017) Feeding on compatible solutes: A substrate-induced pathway for uptake and catabolism of ectoines and its genetic control by EnuR. Environ Microbiol 19: 926–946.
3. Czech, L., Stöveken, N., and Bremer, E. (2016) EctD-mediated biotransformation of the chemical chaperone ectoine into hydroxyectoine and its mechanosensitive channel-independent excretion. Microb Cell Fact 15: 126.
4. Widderich, N., Czech, L., Elling, F.J., Könneke, M., Stöveken, N., Pittelkow, M., et al. (2016) Strangers in the archaeal world: osmostress-responsive biosynthesis of ectoine and hydroxyectoine by the marine thaumarchaeon Nitrosopumilus maritimus. Environ Microbiol 18: 1227–1248.
5. Widderich, N., Kobus, S., Höppner, A., Riclea, R., Seubert, A., Dickschat, J.S., et al. (2016) Biochemistry and Crystal Structure of Ectoine Synthase: A Metal-Containing Member of the Cupin Superfamily. PLoS ONE 11: e0151285.
   
   
   

 

D 8 Werner Liesack

1.    Peng, J., Wegner, C.-E., and Liesack, W. (2017) Short-Term Exposure of Paddy Soil Microbial Communities to Salt Stress Triggers Different Transcriptional Responses of Key Taxonomic Groups. Front Microbiol 8: 400.
2. Wegner, C.-E., and Liesack, W. (2017) Unexpected Dominance of Elusive Acidobacteria in Early Industrial Soft Coal Slags. Front Microbiol 8: 1023.
   
   

 

 

D 9   Andreas Brune

1.   Hervé, V., Brune, A. (2017) The complete mitochondrial genomes of the higher termites Labiotermes labralis and Embiratermes neotenicus (Termitidae: Syntermitinae). Mitochondr. DNA Part B 2: 109–110
2. Mikaelyan, A., Meuser, K., Brune, A. (2016) Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood- and humus-feeding higher termites. FEMS Microbiol. Ecol. 93: fiw20
   

 

E 1   Alfred Batschauer

 

1.   

Orth, C., Niemann, N., Hennig, L., Essen, L.-O., Batschauer, A. (2017) Hyperactivity of the Arabidopsis cryptochrome 1 (cry1) L407F mutant is caused by a structural alteration close to the cry1 ATP-binding site. J. Biol. Chem. jbc.M117.788869. doi:10.1074/jbc.M117.788869.

 

   
   
   

 

E 5   Anke Becker

1.     Baumgardt K., Melior H., Madhugiri R., Thalmann S., Schikora A., McIntosh M., Becker A., Evguenieva-Hackenberg E. (2017) RNase E and RNase J are needed for S?adenosylmethionine homeostasis in Sinorhizobium meliloti. Microbiology SGM 2017: 570–583.
2. Medeot D.B., Rivero M.R., Cendoya E., Contreras-Moreira B., Rossi F.A., Fischer S.E., Becker A., Jofré E. (2017) Sinorhizobium meliloti low molecular weight phosphotyrosine phosphatase SMc02309 modifies activity of the UDP-glucose pyrophosphorylase ExoN involved in succinoglycan biosynthesis. Microbiology SGM 2016: 552–563.
3. Salas M.A., Lozano M.J., Lopez J.L., Draghi W., Serrania J., Torres Tejerizo G.A., Albicoro F.J., Nilsson J.F., Pistorio M., del Papa M.F., Parisi G., Becker A., Lagares A. (2017) Specificity traits consistent with legume-rhizobia coevolution displayed by Sinorhizobium meliloti rhizosphere colonization. Environ Microbiol. in press
4. Lagares A (Jr.) Borella GC, Linne U, Becker A, Valverde C (2017) Regulation of polyhydroxybutyrate accumulation in Sinorhizobium meliloti by the 1 trans-encoded small RNA MmgR. J Bacteriol.
5. Robledo, M., Peregrina, A., Millán, V., García-Tomsig, N.I., Torres-Quesada, O., Mateos, P.F., et al. (2017) A conserved α-proteobacterial small RNA contributes to osmoadaptation and symbiotic efficiency of rhizobia on legume roots. Environ Microbiol.
6. Saramago M., Peregrina A., Robledo M., Matos RG, Hilker R., Serrania J., Becker A., Arraiano C.M., Jiménez-Zurdo J.I. (2017) Sinorhizobium meliloti YbeY is an endoribonuclease with unprecedented catalytic features, acting as silencing enzyme in riboregulation. Nucl Acids Res: 1371–1391.
7. Schäper, S., Steinchen, W., Krol, E., Altegoer, F., Skotnicka, D., Søgaard-Andersen, L., et al. (2017) AraC-like transcriptional activator CuxR binds c-di-GMP by a PilZ-like mechanism to regulate extracellular polysaccharide production. Proc Natl Acad Sci U S A 114: E4822-E4831.
8.  
   
   

 

E 6    Gert Bange

1.    Steinchen, W., and Bange, G. (2016) The magic dance of the alarmones (p)ppGpp. Mol Microbiol 101: 531–544.
2. Schäper, S., Steinchen, W., Krol, E., Altegoer, F., Skotnicka, D., Søgaard-Andersen, L., et al. (2017) AraC-like transcriptional activator CuxR binds c-di-GMP by a PilZ-like mechanism to regulate extracellular polysaccharide production. Proc Natl Acad Sci U S A 114: E4822-E4831.
3. Altegoer, F., Rensing, S.A., and Bange, G. (2016) Structural basis for the CsrA-dependent modulation of translation initiation by an ancient regulatory protein. Proc Natl Acad Sci U S A 113: 10168–10173.
   

       

E 8    Lotte Søgaard-Andersen

1.   Schumacher, D. & Søgaard-Andersen, L Regulation of cell polarity in motility and cell division in Myxococcus xanthus. Annu. Rev. Microbiol. 2017.
2. Skotnicka, D. & Søgaard-Andersen, L. Type IV pili-dependent motility as a tool to determine the activity of c-di-GMP modulating enzymes in Myxococcus xanthus. Meth. Mol. Biol. 2017.
3. Treuner-Lange, A. & Søgaard-Andersen, L. Typ-IVa-Pilus-Motilität - Bislang stärkster molekularer Motor zieht Bakterien über Oberflächen. BIOspektrum 2017: 130–134.
4. Schäper, S., Steinchen, W., Krol, E., Altegoer, F., Skotnicka, D., Søgaard-Andersen, L., et al. (2017) AraC-like transcriptional activator CuxR binds c-di-GMP by a PilZ-like mechanism to regulate extracellular polysaccharide production. Proc Natl Acad Sci U S A 114: E4822-E4831.
   
   
   

 

E 9    Lars-Oliver Essen

1.  

Orth, C., Niemann, N., Hennig, L., Essen, L.-O., Batschauer, A. (2017) Hyperactivity of the Arabidopsis cryptochrome 1 (cry1) L407F mutant is caused by a structural alteration close to the cry1 ATP-binding site. J., Biol. Chem. jbc.M117.788869. doi:10.1074/jbc.M117.788869.